Том 18, № 3-4 (2015)
86-87 43
Аннотация
Настоящий выпуск журнала «Электронные библиотеки» представляет собой тематический сборник статей, посвященный проблеме автоматического анализа тональности текстов на русском языке.
Задача анализ тональности состоит в автоматическом определении отношения автора текста (позитивном, негативном или нейтральном) к объектам и ситуациям, о которых говорится в анализируемом тексте. В настоящее время автоматический анализ тональности используется в самых различных приложениях, включая мониторинг репутации компаний и публичных персон, анализ общественных настроений в том или ином регионе, анализ сообществ в социальных сетях и многое другое.
В данном тематическом выпуске представлены статьи участников открытого тестирования систем анализа тональности на русском языке SentiRuEval, провeденном в 2014–2015 годах. В данном тестировании участникам были предложены для решения две основные задачи.
Настоящий выпуск журнала «Электронные библиотеки» представляет собой тематический сборник статей, посвященный проблеме автоматического анализа тональности текстов на русском языке.
Задача анализ тональности состоит в автоматическом определении отношения автора текста (позитивном, негативном или нейтральном) к объектам и ситуациям, о которых говорится в анализируемом тексте. В настоящее время автоматический анализ тональности используется в самых различных приложениях, включая мониторинг репутации компаний и публичных персон, анализ общественных настроений в том или ином регионе, анализ сообществ в социальных сетях и многое другое.
В данном тематическом выпуске представлены статьи участников открытого тестирования систем анализа тональности на русском языке SentiRuEval, провeденном в 2014–2015 годах. В данном тестировании участникам были предложены для решения две основные задачи.
88-119 63
Аннотация
Статья посвящена рассмотрению подходов к анализу тональности текстов по отношению к заданному объекту, а также его характеристикам (аспектам). Для решения задачи анализа тональности по отношению к характеристикам сущности необходимо решать также задачи извлечения аспектов для сущности, категоризацию или кластеризацию аспектов по аспектным категориям, определение тональности текста по отношению к заданному аспекту или аспектной категории. Также в статье описывается задание по анализу тональности отзывов пользователей в рамках открытого тестирования систем анализа тональности SentiRuEval.
Статья посвящена рассмотрению подходов к анализу тональности текстов по отношению к заданному объекту, а также его характеристикам (аспектам). Для решения задачи анализа тональности по отношению к характеристикам сущности необходимо решать также задачи извлечения аспектов для сущности, категоризацию или кластеризацию аспектов по аспектным категориям, определение тональности текста по отношению к заданному аспекту или аспектной категории. Также в статье описывается задание по анализу тональности отзывов пользователей в рамках открытого тестирования систем анализа тональности SentiRuEval.
120-137 22
Аннотация
Исследуется проблема аспектно-эмоционального анализа текста. По сравнению с общим анализом тональности такой вариант является более сложным по причине наличия ряда сопутствующих подзадач, таких, как выделение аспектных терминов, определение тональности по отношению к этим терминам и аспектным категориям. Однако решение данной проблемы значительно расширяет возможности систем автоматического анализа неструктурированного текста.
Приведен обзор предыдущих работ в области аспектно-эмоционального анализа, описаны обучающие и тестовые данные семинара SentiRuEval. Для задачи извлечения аспектных терминов использовано векторное пространство распределенных представлений слов. Тональность аспектных терминов определяется на основе функций совместной информации и семантического сходства. Приведены сравнительные результаты на тестовых данных и заключительные выводы.
Исследуется проблема аспектно-эмоционального анализа текста. По сравнению с общим анализом тональности такой вариант является более сложным по причине наличия ряда сопутствующих подзадач, таких, как выделение аспектных терминов, определение тональности по отношению к этим терминам и аспектным категориям. Однако решение данной проблемы значительно расширяет возможности систем автоматического анализа неструктурированного текста.
Приведен обзор предыдущих работ в области аспектно-эмоционального анализа, описаны обучающие и тестовые данные семинара SentiRuEval. Для задачи извлечения аспектных терминов использовано векторное пространство распределенных представлений слов. Тональность аспектных терминов определяется на основе функций совместной информации и семантического сходства. Приведены сравнительные результаты на тестовых данных и заключительные выводы.
138-162 123
Аннотация
Технологии анализа тональности текста развиваются интенсивно, что обусловлено ростом объемов открытых источников, представляющих мнения пользователей интернета по различным вопросам. В статье описаны методы для анализа тональности текстов отзывов и коротких сообщений (твитов), приводятся результаты оценки их качества, которая производилась в рамках российского семинара SentiRuEval-2015.
163-184 42
Аннотация
Представлен подход к решению задачи анализа тональности в рамках тестирования SentiRuEval – открытого соревнования систем анализа тональности на русском языке. Описанный алгоритм был применен в дорожке по анализу тональности твитов о банках и телекоммуникационных компаниях. Для этих данных была разработана и оценена классификация на три класса: положительный, отрицательный и нейтральный.
Для решения поставленной задачи использовались различные алгоритмы машинного обучения. Признаками для классификатора являлись лингвистические данные, полученные из текста с помощью разработанного нами морфо-синтаксического анализатора. Нормализованные слова, а также синтаксические связи, оказались решающими признаками для достижения наилучшего результата, который был получен с помощью статистического алгоритма опорных векторов.
Оценка, проведенная организаторами конкурса, выявила высокое качество предложенного подхода, который занял первую строчку по трем из четырех мерам качества.
Представлен подход к решению задачи анализа тональности в рамках тестирования SentiRuEval – открытого соревнования систем анализа тональности на русском языке. Описанный алгоритм был применен в дорожке по анализу тональности твитов о банках и телекоммуникационных компаниях. Для этих данных была разработана и оценена классификация на три класса: положительный, отрицательный и нейтральный.
Для решения поставленной задачи использовались различные алгоритмы машинного обучения. Признаками для классификатора являлись лингвистические данные, полученные из текста с помощью разработанного нами морфо-синтаксического анализатора. Нормализованные слова, а также синтаксические связи, оказались решающими признаками для достижения наилучшего результата, который был получен с помощью статистического алгоритма опорных векторов.
Оценка, проведенная организаторами конкурса, выявила высокое качество предложенного подхода, который занял первую строчку по трем из четырех мерам качества.
185-202 38
Аннотация
Исследуется применение лингвистического подхода для решения задачи автоматического определения тональности объекта. Исследование проводилось в рамках цикла тестирования систем автоматического анализа тональности SentiRuEval. Задание, предложенное организаторами дорожки, заключалось в том, чтобы определить мнение пользователя (положительное, отрицательное или нейтральное) по отношению к операторам сотовой связи на материале сообщений социальной сети Twitter и новостей. Авторы настоящей работы исключили новостные сообщения из тестовой коллекции, так как формальные тексты существенно отличаются от неформальных по своей структуре и лексике и, следовательно, требуют другого подхода. При решении поставленной задачи был использован лингвистический метод, основанный на синтактико-семантическом анализе. Согласно этому подходу тональная лексика привязывается к объекту на одной из двух последовательных стадий. Первая стадия включает в себя использование семантических шаблонов, которые сравниваются с деревом синтаксического разбора предложения; вторая стадия использует эвристики для связывания тональной лексики с объектом оценки в случае, когда синтаксические связи между ними отсутствуют. Машинное обучение не применялось. Метод продемонстрировал очень хорошие результаты, которые примерно совпадают с лучшими результатами методов с использованием машинного обучения и гибридных методов.
203-221 27
Аннотация
Описана система, принимавшая участие в соревновании SentiRuEval-2015 по автоматическому извлечению аспектов из отзывов и оценке этих аспектов по тональности. В основе разработанной системы лежит алгоритм условных случайных полей (CRF), она использовалась в решении двух подзадач и тестировалась на двух предметных областях: рестораны и автомобили. Для обеих задач и обеих предметных областей показаны высокие показатели метрики полноты. Это означает, что система может вполне успешно находить аспектные термины. Вместе с тем, полученный низкий показатель точности свидетельствует о том, что система принимает за аспектные достаточно много терминов, которые аспектными не являются. В целом же система показала сравнительно хорошие результаты по сравнению с другими участниками соревнования.
ISSN 1562-5419 (Online)