Intelligent Chemist Robot: Towards an Autonomous Laboratory
https://doi.org/10.26907/1562-5419-2025-28-5-997-1014
Abstract
This paper describes a hardware and software platform that enables automated chemical syntheses, including the preparation, heating, and mixing of reaction mixtures, as well as post-synthesis dilution sampling and sending for high-performance liquid chromatography (HPLC) analysis, followed by automated processing of the results. A custom Python library, ChemBot, was developed to control individual robotic devices, and a client web server was created to manage the entire system. A web interface was created to view the system status and the progress of syntheses. The performance of the entire platform for performing experiments was tested by performing aldol condensation syntheses, where the ratio of reagents, the catalyst and its amount, the temperature and time of synthesis were varied. Writing custom code to monitor and control the entire system is an important step toward integrating the robotic system with artificial intelligence (AI), which will ultimately enable the transition to an autonomous laboratory, where target molecule prediction and synthesis, experimental execution and analysis, and, if necessary, refinement or modification of the model will be performed automatically, without the need for human intervention.
About the Authors
Musa Shamilevich AdygamovRussian Federation
Anton Olegovich Golub
Russian Federation
Emil Rinatovich Saifullin
Russian Federation
Timur Rustemovich Gimadiev
Russian Federation
Nikita Yurievich Serov
Russian Federation
References
1. Tom G., Schmid S.P., Baird S.G., Cao Y., Darvish K., Hao H., Lo S., Pablo-García S., Rajaonson E.M., Skreta M., Yoshikawa N., Corapi S., Akkoc G.D., Strieth-Kalthoff F., Seifrid M., and Aspuru-Guzik A. Self-Driving Laboratories for Chemistry and Materials Science // Chemical Reviews. 2024. Vol. 16, No. 124, P. 9633–9732. https://doi.org/10.1021/acs.chemrev.4c00055
2. Seifrid M., Pollice R., Aguilar-Granda A., Morgan Chan Z., Hotta K., Ser C.T., Vestfrid J., Wu T.C., Aspuru-Guzik A. Autonomous Chemical Experiments: Challenges and Perspectives on Establishing a Self-Driving Lab // Accounts of Chemical Research. 2022. Vol. 55, I. 17. P. 2454–2466. https://doi.org/10.1021/acs.accounts.2c00220
3. Burger B., Maffettone P.M., Gusev V.V., Aitchison C.M., Bai Y., Wang X., Li X., Alston B.M., Li B., Clowes R., Rankin N., Harris B., Spick R.S., Cooper A.I. A mobile robot chemist // Nature. 2020. Vol. 583. P. 237–241. https://doi.org/10.1038/s41586-020-2442-2
4. Martin K.N., Rubsamen M.S., Kaplan N.P., Hendrick M.P. Method for Interfacing a Plate Reader Spectrometer Directly with an OT-2 Liquid Handling Robot // ChemRxiv. 2022. https://doi.org/10.26434/chemrxiv-2022-6z4q1
5. Sanchez-Lengeling B., Aspuru-Guzik A. Inverse molecular design using machine learning: Generative models for matter engineering // Science. 2018. Vol. 361, I. 6400. P. 360–365. https://doi.org/10.1126/science.aat2663
6. Manzano J.S., Hou W., Zalesskiy S.S., Frei P., Wang H., Kitson P.J., Cronin L. An autonomous portable platform for universal chemical synthesis // Nature Chemistry. 2022. Vol. 14. P. 1311–1318. https://doi.org/10.1038/s41557-022-01016-w
7. Lee E.C., Salley D., Sharma A., Cronin L. AI-Driven Robotic Crystal Explorer for Rapid Polymorph Identification // arXiv. 2024. https://doi.org/10.48550/arXiv.2409.05196
8. Автоматизированная станция пробоподготовки LifeBot. URL: https://evotech-mg.com/products/avtomatizirovannaya-stanciya-probopodgotovki
9. Separations. Analytical Instruments. Smartline HPLC Series. URL: https://separations.nl/en/products/detail/smartline-hplc-series-knauer
10. Afonina V.A., Mazitov D.A., Nurmukhametova A., Shevelev M.D., Khasanova D.A., Nugmanov R.I., Burilov V.A., Madzhidov T.I., Varnek A. Prediction of Optimal Conditions of Hydrogenation Reaction Using the Likelihood Ranking Approach // International Journal of Molecular Sciences. 2022. Vol. 23, I. 1. P. 248. https://doi.org/10.3390/ijms23010248
11. Ahneman D.T., Estrada J.G., Dreher S.D., Doyle A.G. Predicting reaction performance in C–N cross-coupling using machine learning // Science. 2018. Vol. 360, I. 6385. P. 186–190. https://doi.org/10.1126/science.aar5169
12. Kashafutdinova I.M., Poyezzhaeva A., Gimadiev T., Matzhidov T. Active learning approaches in molecule pKi prediction // Molecular Informatics. 2024. Vol. 44, I. 1. Art. e202400154. https://doi.org/10.1002/minf.202400154
13. Bort W., Baskin I.I., Gimadiev T., Mukanov A., Nugmanov R., Sidorov P., Marcou G., Horvath D., Klimchuk O., Madzhidov T., Varnek A. Discovery of novel chemical reactions by deep generative recurrent neural network // Scientific Reports. 2021. Vol. 11. P. 3178. https://doi.org/10.1038/s41598-021-81889-y
14. Knauer. ClarityChrom CDS. URL: https://www.knauer.net/software-claritychrom-cds
Review
For citations:
Adygamov M.Sh., Golub A.O., Saifullin E.R., Gimadiev T.R., Serov N.Yu. Intelligent Chemist Robot: Towards an Autonomous Laboratory. Russian Digital Libraries Journal. 2025;28(5):997-1014. (In Russ.) https://doi.org/10.26907/1562-5419-2025-28-5-997-1014
JATS XML















