Preview

Russian Digital Libraries Journal

Advanced search

Digital Twin of Parking Space

https://doi.org/10.26907/1562-5419-2025-28-4-884-902

Abstract


Increasing urbanization and motorization lead to a shortage of parking spaces, resulting in congestion, increased emissions, and a declining quality of life. Traditional parking management methods are ineffective in addressing this issue, necessitating the use of data analysis and forecasting tools. This paper examines the use of a digital twin of the Kazan parking system. Data was filtered and integrated, points of interest were clustered, and a correlation analysis of factors influencing parking occupancy was performed. Linear regression, decision tree, random forest, XGBoost, MLP, and LSTM models were trained and compared to predict occupancy levels. The random forest model demonstrated the best results. The developed digital twin prototype enables monitoring and scenario modeling, making it an effective tool for parking space optimization and management decision-making.

About the Authors

Rifkat Nurgalievich Minnikhanov
Tatarstan Academy of Sciences
Russian Federation


Timur Ruslanovich Batorshin
Kazan State Power Engineering University
Russian Federation


Ruslan Marselevich Gabbazov
Kazan National Research Technical University named after A. N. Tupolev-KAI
Russian Federation


Ruzel Ildarovich Fakhraziev
Kazan National Research Technical University named after A. N. Tupolev-KAI
Russian Federation


Alexey Sergeevich Katasev
Kazan National Research Technical University named after A. N. Tupolev-KAI
Russian Federation


Maria Vitalievna Dagaeva
SBI "Road Safety"
Russian Federation


Inzil Rinatovich Badrutdinov
Kazan National Research Technical University named after A. N. Tupolev-KAI
Russian Federation


References

1. Amusan A.A., Ogunleye G.A. A Digital Twin-Enabled Smart Car Park Management System: Architecture and Impact on Emission Reduction // FUOYE Journal of Engineering and Technology. 2024. Vol. 9. No. 4. P. 629–635.

2. Coching J.K. et al. Digital Twinning Mechanism and Building Information Modeling for a Smart Parking Management System // Smart Cities. 2025. Vol. 8. No. 5. P. 146.

3. Zou Y. et al. A Digital Twin prototype for smart parking management // ECPPM 2022-eWork and eBusiness in Architecture, Engineering and Construction 2022. CRC Press, 2023. P. 250–257.

4. Chen W., Wang X., Wu M. Intelligent Parking Service System Design Based on Digital Twin for Old Residential Areas // Electronics. 2024. Vol. 13. No. 23. P. 4597.

5. Open Street Map. URL: https://www.openstreetmap.org/ (last access: 25.08.2025).

6. Gorparkovki Kazan'. Oficial'nyj sajt servisa parkovok . URL: https://parkingkzn.ru/ru/ (last access: 25.08.2025).

7. Aliguliyev R., Tahirzada S.F. Performance comparison of k-means, parallel k-means and k-means++ // Reliability: Theory & Applications. 2025. Vol. 20. No. S7 (83). P. 169–176.

8. Bazilevsky M.P. Reshenie optimizacionnoj zadachi ocenivaniya modelej polnosvyaznoj linejnoj regressii // Modeling and data analysis. 2024. Vol. 14. No. 1. P. 121–134.

9. Pyrnova O.A., Katasev A.S. Postroenie i ocenka effektivnosti modeli dereva reshenij dlya prognozirovaniya uspevaemosti obuchayushchihsya // Engineering Bulletin of the Don. 2024. No. 4 (112). P. 578–584.

10. Utkin L., Konstantinov A. Random survival forests incorporated by the Nadaraya-Watson regression // Informatics and Automation. 2022. Vol. 21. No. 5. P. 851–880.

11. Chen T., Guestrin C. XGBoost: A scalable tree boosting system // Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. 2016. P. 785–794.

12. Matveeva K.A., Minnikhanov R.N., Katasev A.S. Svertochnaya nejrosetevaya model' akusticheskogo obnaruzheniya avarijno-spasatel'nyh mashin // Bulletin of the Technological University. 2024. Vol. 27. No. 1. P. 76–80.

13. Komartsova L.G., Kadnikov D.S. Issledovanie geneticheskih algoritmov dlya obucheniya mnogoslojnogo perseptrona // Neurocomputers: development, application. 2010. No. 12. P. 12–19.

14. Hochreiter S., Schmidhuber J. Long short-term memory // Neural computation. 1997. Vol. 9. No. 8. P. 1735–1780.

15. Emaletdinova L.Yu., Vildanov N.R., Katasev A.S. Ispol'zovanie nejrosetevoj modeli TCN-LSTM dlya prognozirovaniya znachenij vremennogo ryada // Scientific and Technical Bulletin of the Volga Region. 2023. No. 6. P. 62–64.


Review

For citations:


Minnikhanov R.N., Batorshin T.R., Gabbazov  R.M., Fakhraziev R.I., Katasev A.S., Dagaeva M.V., Badrutdinov I.R. Digital Twin of Parking Space. Russian Digital Libraries Journal. 2025;28(4):884-902. (In Russ.) https://doi.org/10.26907/1562-5419-2025-28-4-884-902

Views: 20

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-5419 (Online)