Preview

Russian Digital Libraries Journal

Advanced search

Inverse Problem of Identification of Thermophysical Parameters of the Green-Nagdi Type III Model for an Elastic Rod Based on a Physically Informed Neural Network

https://doi.org/10.26907/1562-5419-2025-28-4-852-869

Abstract


In this paper, we study the inverse problem of identifying the dimensionless thermal conductivity coefficient for the Green–Naghdi equation of type III, which describes the propagation of thermal disturbances with a finite velocity and takes into account the inertial effects of heat flux. For the inverse problem, the stability requirement (Hadamard criteria) is violated, as a result of which even minimal data distortions lead to significant errors in parameter identification. As a solution method, we use an approach based on physically informed neural networks (PINN), which combines the capabilities of deep learning with a priori knowledge of the structure of the differential equation. The parameter is included among the trained variables, and the loss function is formed based on the deviation from the differential equation, boundary conditions, initial conditions, and noisy experimental data from a point sensor. The results of computational experiments are presented, demonstrating high accuracy of parameter recovery (error less than 0.03%) and the stability of the method with respect to the presence of additive Gaussian noise in the data. The PINN method has proven itself to be an effective tool for solving ill-posed inverse problems of mathematical physics.

About the Authors

Yana Andreevna Vakhterova
National Research University
Russian Federation


Darya Andreevna Leontyeva
National Research University
Russian Federation


References

1. Smirnova V., Semenova E., Prunov V., Zamaliev R.; Sachenkov O. Topological Approach for Material Structure Analyses in Terms of R2 Orientation Distribution Function // Mathematics. 2023. Vol. 11, No. 12. 2639.

2. https://doi.org/10.3390/math11122639

3. Hadamard J. Le probleme de Cauchy et les equations aux derivers particlee lineaires hyperbolique. Paris: Hermann, 1932. 542 p.

4. Lokteva N.A., Serdyuk D.О., Skopintsev P.D. Non-stationary influence function for an unbounded anisotropic Kirchoff–Love shell // Journal of Applied Engineering Science, 2020. Vol. 18, No. 4. P. 737–744. https://doi.org/10.5937/jaes0-28205

5. Serdyuk A.O., Fedotenkov G.V. Unsteady bending function for an unlimited anisotropic plate // Vestnik Samarskogo Gosudarstvennogo Tekhnicheskogo Universiteta, Seriya Fiziko-Matematicheskie Nauki, 2021. Vol. 25, No. 1. P. 111–126.

6. https://doi.org/10.14498/vsgtu1793

7. Orekhov A.A., Rabinskij L.N., Fedotenkov G.V. Fundamental'nye re-sheniya uravnenij klassicheskoj i obobshchennoj modelej teploprovodnosti // Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki. 2023. T. 165(4). S. 404–414. https://doi.org/10.26907/2541-7746.2023.4.404-414

8. Paszke A., Gross S., Massa F., Lerer A., Bradbury J., Chanan G., Killeen T., Lin Z., Gimelshein N., Antiga L., Desmaison A., Köpf A., Yang E., DeVito Z., Raison M., Tejani A., Chilamkurthy S., Steiner B., Fang L., Bai J., Chintala S. PyTorch: An Imperative Style, High-Performance Deep Learning Library // NeurIPS. 2019.

9. https://doi.org/10.48550/arXiv.1912.01703

10. Vahterova YA.A., Rabinskij L.N. Fizicheski informirovannaya nejronnaya set' dlya resheniya uravneniya teploprovodnosti Grina-Nagdi III tipa // STIN. 2025. №9. S. 28–32.

11. Raissi M., Perdikaris P., Karniadakis G.E. Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations // arXiv:1711.10561, 2017, URL: https://arxiv.org/abs/1711.10561v1.

12. https://doi.org/10.48550/arXiv.1711.10561

13. Fedotenkov G.V., Kireenkov A.A. Algoritm resheniya kontaktnyh za-dach s ispol'zovaniem tekhnologij glubokogo mashinnogo obucheniya // STIN. 2024. № 12. S. 24–27. https://www.elibrary.ru/joqxsg.

14. Goncharenko V.I., Oleshko V.S. Ispol'zovanie iskusstvennyh nejron-nyh setej v nerazrushayushchem kontrole detalej aviacionnoj tekhniki // Izve-stiya vysshih uchebnyh zavedenij. Aviacionnaya tekhnika. 2024. № 3. S. 30–35.

15. Ivanova A., Kharin N., Baltina T., Sachenkov O. Muscle tone control system based on LIF model neural network // VIII International Conference on Information Technology and Nanotechnology (ITNT), Samara, Russian Federation, 2022. P. 1–4. https://doi.org/10.1109/ITNT55410.2022.9848650

16. Ivanova A., Kharin N., Smirnova V., Tufanova E., Sachenkov O. Stabilization of a pendulum on an elastic foundation using a multilayer perceptron// Journal of Physics: Conference Series. 2022. Vol. 2308. 012005. https://doi.org/10.1088/1742-6596/2308/1/012005.


Review

For citations:


Vakhterova Ya.A., Leontyeva D.A. Inverse Problem of Identification of Thermophysical Parameters of the Green-Nagdi Type III Model for an Elastic Rod Based on a Physically Informed Neural Network . Russian Digital Libraries Journal. 2025;28(4):852-869. (In Russ.) https://doi.org/10.26907/1562-5419-2025-28-4-852-869

Views: 11

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-5419 (Online)