Preview

Russian Digital Libraries Journal

Advanced search

Synchronization of player and virtual avatar movements

Abstract


The paper presents mathematical approaches for implementing methods for synchronizing human actions and virtual avatar movements, using inverse kinematics. To create a complete system for synchronizing the player's behavior and VR-avatar, the implementation of the necessary functionality is described: hand positioning, calibration of their size, bending of hands into anatomically acceptable sides, anatomical flexion of the spine, squatting and moving in space. The implementation of tilt and squat significantly extends the functionality of synchronization of the player's behavior and avatar, which allows creating a complete set of visual sensations of the user in a virtual environment, which is deprived of most of the applications of virtual reality at the moment.

Keywords


About the Authors

П. Гришков
Высшая школа информационных технологий и интеллектуальных систем Казанского (Приволжского) федерального университета
Russian Federation


В. Кугуракова
Высшая школа информационных технологий и интеллектуальных систем Казанского (Приволжского) федерального университета
Russian Federation


References

1. Abramov V.D., Kugurakova V.V., Rizvanov A.A., Abramskiy M.M., Manakhov N., Evstafiev M.E., Ivanov D.S. Virtual biotechnological labs development // BioNanoScience. 2017. Vol. 7. Iss. 2. P. 363–365.

2. Kugurakova, V., Khafizov M., Akhmetsharipov R. Virtual surgery system with realistic visual effects and haptic interaction // Proc. of The International Conference On Artificial Life And Robotics. 2017. P. P86–P89.

3. Shigapov M., Kugurakov, V., Zykov E. Design of digital gloves with feedback for VR // Proc. of IEE EWDTS. 2018.

4. Won A.S., Bailenson J., Lee J., Lanier J. Homuncular Flexibility in Virtual Reality // Journal of Computer-Mediated Communication. 2015. Vol. 20. No. 3. P. 241–259.

5. Slater M., Wilbur S. A framework for immersive virtual environments (five): Speculations on the role of presence in virtual environments // Presence: Teleoperators and virtual environments. 1997. Vol. 6. No. 6. P. 603–616.

6. Martin Usoh M.S., Steed, A. Taking Steps: The Influence of a Walking Technique on Presence in Virtual Reality // ACM Transactions on Computer-Human Interaction. 1995. Vol. 2. No. 3. P. 201–219.

7. Lin Q., Rieser J.J., Bodenheimer B. Stepping off a ledge in an HMD-based immersive virtual environment // Proc. of ACM Symposium on Applied Perception. 2013. P. 107.

8. Dodds T.J., Mohler B.J. & Bülthoff H.H. Talk to the virtual hands: Self-animated avatars improve communication in head-mounted display virtual environments // PLoS ONE. 2011. Vol. 6. No. 10.

9. Kugurakova V., Talanov M., Manakhov N. Anthropomorphic artificial social agent with simulated emotions and its implementation // 6th Annual Int. Conference on Biologically Inspired Cognitive Architecture. 2015. Vol.71. P. 112–118.

10. CyberGlove Systems. URL: http://www.cyberglovesystems.com/

11. Wheatland N., Wan Y., Song H., Neff M., Zordan V. & Jörg S. State of the Art in Hand and Finger Modeling and Animation // Computer Graphics Forum. 2015. Vol. 34. No. 2. P. 735–760.

12. Microsoft Kinect. URL: https://www.xbox.com/ru-RU/xbox-one/accessories/kinect

13. Proteus VR. URL: https://www.proteus-vr.com

14. IKinema. URL: https://www.ikinema.com

15. Unreal Engine. URL: http://unrealengine.com

16. Copenhaver J. VR Animation and Locomotion Systems in Lone Echo. URL: https://readyatdawn.sharefile.com/share/view/s80d4725de7045259

17. Steed A., Pan Y., Zisch F. & Steptoe W. The impact of a self-avatar on cognitive load in immersive virtual reality // Proc. of IEEE Virtual Reality. 2016. P. 67.


Review

For citations:


 ,   Synchronization of player and virtual avatar movements. Russian Digital Libraries Journal. 2018;21(3-4):323-337. (In Russ.)

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-5419 (Online)