Синхронизация движений игрока и виртуального аватара
Аннотация
Представлены математические подходы для реализации методов по синхронизации действий человека и виртуального аватара, с использованием инверсной кинематики. Для создания полноценной системы синхронизации поведения игрока и VR-аватара описана реализация необходимого для этого функционала: позиционирование рук, калибровка их размера, сгибание рук в анатомически приемлемые стороны, анатомическое сгибание позвоночника, приседание и перемещение в пространстве. Реализация наклона и приседания значительно расширяет функционал синхронизации поведения игрока и его аватара, что позволяет создать полный набор визуальных самоощущений пользователя, находящегося в виртуальной среде, чего лишено большинство приложений виртуальной реальности на данный момент.
Об авторах
П. Д. ГришковРоссия
В. В. Кугуракова
Россия
Список литературы
1. Abramov V.D., Kugurakova V.V., Rizvanov A.A., Abramskiy M.M., Manakhov N., Evstafiev M.E., Ivanov D.S. Virtual biotechnological labs development // BioNanoScience. 2017. Vol. 7. Iss. 2. P. 363–365.
2. Kugurakova, V., Khafizov M., Akhmetsharipov R. Virtual surgery system with realistic visual effects and haptic interaction // Proc. of The International Conference On Artificial Life And Robotics. 2017. P. P86–P89.
3. Shigapov M., Kugurakov, V., Zykov E. Design of digital gloves with feedback for VR // Proc. of IEE EWDTS. 2018.
4. Won A.S., Bailenson J., Lee J., Lanier J. Homuncular Flexibility in Virtual Reality // Journal of Computer-Mediated Communication. 2015. Vol. 20. No. 3. P. 241–259.
5. Slater M., Wilbur S. A framework for immersive virtual environments (five): Speculations on the role of presence in virtual environments // Presence: Teleoperators and virtual environments. 1997. Vol. 6. No. 6. P. 603–616.
6. Martin Usoh M.S., Steed, A. Taking Steps: The Influence of a Walking Technique on Presence in Virtual Reality // ACM Transactions on Computer-Human Interaction. 1995. Vol. 2. No. 3. P. 201–219.
7. Lin Q., Rieser J.J., Bodenheimer B. Stepping off a ledge in an HMD-based immersive virtual environment // Proc. of ACM Symposium on Applied Perception. 2013. P. 107.
8. Dodds T.J., Mohler B.J. & Bülthoff H.H. Talk to the virtual hands: Self-animated avatars improve communication in head-mounted display virtual environments // PLoS ONE. 2011. Vol. 6. No. 10.
9. Kugurakova V., Talanov M., Manakhov N. Anthropomorphic artificial social agent with simulated emotions and its implementation // 6th Annual Int. Conference on Biologically Inspired Cognitive Architecture. 2015. Vol.71. P. 112–118.
10. CyberGlove Systems. URL: http://www.cyberglovesystems.com/
11. Wheatland N., Wan Y., Song H., Neff M., Zordan V. & Jörg S. State of the Art in Hand and Finger Modeling and Animation // Computer Graphics Forum. 2015. Vol. 34. No. 2. P. 735–760.
12. Microsoft Kinect. URL: https://www.xbox.com/ru-RU/xbox-one/accessories/kinect
13. Proteus VR. URL: https://www.proteus-vr.com
14. IKinema. URL: https://www.ikinema.com
15. Unreal Engine. URL: http://unrealengine.com
16. Copenhaver J. VR Animation and Locomotion Systems in Lone Echo. URL: https://readyatdawn.sharefile.com/share/view/s80d4725de7045259
17. Steed A., Pan Y., Zisch F. & Steptoe W. The impact of a self-avatar on cognitive load in immersive virtual reality // Proc. of IEEE Virtual Reality. 2016. P. 67.
Рецензия
Для цитирования:
Гришков П.Д., Кугуракова В.В. Синхронизация движений игрока и виртуального аватара. Электронные библиотеки. 2018;21(3-4):323-337.
For citation:
, Synchronization of player and virtual avatar movements. Russian Digital Libraries Journal. 2018;21(3-4):323-337. (In Russ.)