Preview

Russian Digital Libraries Journal

Advanced search

Stylometric Analysis in the Task of Searching for Borrowings of Texts in the Tatar Language

https://doi.org/10.26907/1562-5419-2025-28-5-1267-1278

Abstract


This article discusses the use of stylometric analysis in searching for borrowings of text in the Tatar language. Relevant tools have been developed, utilizing machine learn-ing algorithms, including clustering (k-means method), classification (random forest method, support vector machine method, naive Bayes classifier), and a hybrid approach (FastText model + logistic regression). Special attention is paid to the adaptation of lin-guistic metrics for the Tatar language.

About the Authors

Izida Zufarovna Khayaleeva
Kazan (Volga region) Federal University
Russian Federation


Mikhail Mikhailovich Abramskiy
Kazan (Volga region) Federal University
Russian Federation


References

1. Postanovlenie Kabineta Ministrov Respubliki Tatarstan "Ob Utverzhdenii Gosudarstvennoy Programmy Sokhranenie, Izucheniye i Razvitie Gosudarstvennykh Yazykov Respubliki Tatarstan i Drugikh Yazykov v Respublike Tatarstan na 2023–2030 Gody" // Official Portal of Juridical Information of Republic of Tatarstan. Kazan, 2020. URL: https://pravo.tatarstan.ru/npa_kabmin/post/?npa_id=625356 (access date: 19.08.2025).

2. Karimov K.Kh., Vasily E.A. Teoreticheskie osnovy klasterizacii dannyh // Aktual'nye voprosy fundamental'nyh i prikladnyh nauchnyh issledovanij. 2023. P. 242–247.

3. Balyasova I.I. Parametry Slozhnosti Teksta v Tatarskom Yazyke // Vyzovy i Trendy Mirovoy Lingvistiki. 2020. Vol. 16. P. 302.

4. Solnyshkina M.I. McNamara D.S., Zamaletdinov R.R. Obrabotka Yestestvennogo Yazyka i Izucheniye Slozhnosti Diskursa // Russian Journal of Linguistics. 2022. Vol. 26, No. 2. P. 317–341.

5. Scott M., Tribble C. Textual patterns: Key words and corpus analysis in language education. Аmsterdam: John Benjamins Publishing, 2006. 203 с.

6. Honoré A. et al. Some simple measures of richness of vocabulary // Association for literary and linguistic computing bulletin. 1979. Vol. 7, No. 2. P. 172–177.

7. Flesch R. A new readability yardstick // Journal of applied psychology. 1948. Vol. 32, No. 3. P. 221–233.

8. Kincaid J.P., Fishburne Jr R.P., Rogers R.L., Chissom B.S. Derivation of new readability formulas (automated readability index, fog count and flesch reading ease formula) for navy enlisted personnel // Institute for Simulation and Training. 1975. 49 p.

9. Kuzman T., Ljubešić N. Automatic genre identification: a survey // Language Resources and Evaluation. 2025. Vol. 59, No. 1. P. 537–570.

10. Salman H.A., Kalakech A., Steiti A. Random forest algorithm overview // Babylonian Journal of Machine Learning. 2024. Vol. 2024. P. 69–79.

11. Bansal M., Goyal A., Choudhary A. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision tree, and long short-term memory algorithms in machine learning // Decision Analytics Journal. 2022. Vol. 3. P. 100071.

12. Rastogi S., Sambyal R., Tyagi P., Kushwaha R. Multinomial Naive Bayes Classification Algorithm Based Robust Spam Detection System // 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0. IEEE, 2024. P. 1–5.

13. Khusainova A., Khan A., Rivera A.R. Sart-similarity, analogies, and relatedness for tatar language: New benchmark datasets for word embeddings evaluation // International Conference on Computational Linguistics and Intelligent Text Processing. Cham: Springer Nature Switzerland, 2019. P. 380–390.

14. Pedregosa F. et al. Scikit-learn: Machine Learning in Python // Journal of Machine Learning Research. 2020. Vol. 12. P. 2825–2830.

15. Conneau A., Khandelwal K., Goyal N., Chaudhary V., Wenzek G., Guzmán F., Stoyanov V. Unsupervised Cross-lingual Representation Learning at Scale // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020. P. 8440–8451.


Review

For citations:


Khayaleeva I.Z., Abramskiy M.M. Stylometric Analysis in the Task of Searching for Borrowings of Texts in the Tatar Language. Russian Digital Libraries Journal. 2025;28(5):1267-1278. (In Russ.) https://doi.org/10.26907/1562-5419-2025-28-5-1267-1278

Views: 25

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-5419 (Online)