Abstractive Summarization for Trade News Analysis Based on a New Domain-Specific Dataset
https://doi.org/10.26907/1562-5419-2025-28-5-1120-1137
Abstract
We present TradeNewsSum—a corpus for abstractive summarization of international trade news—covering Russian- and English-language publications from domain-specific sources. All summaries are manually prepared following unified guidelines. We conducted experiments with fine-tuning transformer and seq2seq models and performed automatic evaluation using the LLM-as-a-judge scheme. LLaMA 3.1 in instruction-prompting mode achieved the best results, showing high scores across metrics, including factual completeness.
About the Authors
Daria Andreevna LyutovaRussian Federation
Valentin Andreevich Malykh
Russian Federation
References
1. Bahdanau D. et al. End-to-end attention-based large vocabulary speech recognition // 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2016. P. 4945–4949.
2. Banerjee S., Lavie A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments // Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine translation and/or summarization. 2005. P. 65–72.
3. Fabbri A. R. et al. Multi-news: A large-scale multi-document summarization dataset and abstractive hierarchical model // arXiv preprint arXiv:1906.01749. 2019.
4. Fischer T., Remus S., Biemann C. Measuring faithfulness of abstractive summaries // Proceedings of the 18th Conference on Natural Language Processing (KONVENS 2022). 2022. P. 63–73.
5. Fu J. et al. Gptscore: Evaluate as you desire // arXiv preprint arXiv:2302.04166. 2023.
6. Gavrilov D., Kalaidin P., Malykh V. Self-attentive model for headline generation // Advances in Information Retrieval: 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April 14–18, 2019, Proceedings, Part II 41. Springer International Publishing, 2019. P. 87–93.
7. Goyal T., Li J. J., Durrett G. News summarization and evaluation in the era of gpt-3 // arXiv preprint arXiv:2209.12356. 2022.
8. Grusky M., Naaman M., Artzi Y. Newsroom: A dataset of 1.3 million summaries with diverse extractive strategies // arXiv preprint arXiv:1804.11283. 2018.
9. Gusev I. Dataset for automatic summarization of Russian news // Artificial Intelligence and Natural Language: 9th Conference, AINL 2020, Helsinki, Finland, October 7–9, 2020, Proceedings 9. Springer International Publishing, 2020. P. 122–134.
10. Hasan T. et al. XL-sum: Large-scale multilingual abstractive summarization for 44 languages // arXiv preprint arXiv:2106.13822. 2021.
11. Kryściński W. et al. Neural text summarization: A critical evaluation // arXiv preprint arXiv:1908.08960. 2019.
12. Lewis M. et al. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension // arXiv preprint arXiv:1910.13461. 2019.
13. Liu Y. et al. G-eval: NLG evaluation using gpt-4 with better human alignment // arXiv preprint arXiv:2303.16634. 2023.
14. Narayan S., Cohen S. B., Lapata M. Don't give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization // arXiv preprint arXiv:1808.08745. 2018.
15. Paulus R., Xiong C., Socher R. A deep reinforced model for abstractive summarization // arXiv preprint arXiv:1705.04304. 2017.
16. Raffel C. et al. Exploring the limits of transfer learning with a unified text-to-text transformer // Journal of machine learning research. 2020. Vol. 21, No. 140. P. 1–67.
17. Rush A.M., Chopra S., Weston J. A neural attention model for abstractive sentence summarization // arXiv preprint arXiv:1509.00685. 2015.
18. Sandhaus E. The New York Times Annotated Corpus Overview [Electronic resource]. Philadelphia: Linguistic Data Consortium, 2008. (LDC Catalog No. LDC2008T19). https://gwern.net/doc/ai/dataset/2008-sandhaus.pdf (accessed: 21.05.2025).
19. Scialom T. et al. MLSUM: The multilingual summarization corpus // arXiv preprint arXiv:2004.14900. 2020.
20. See A., Liu P. J., Manning C.D. A Neural Attention Model for Abstractive Sentence Summarization [Electronic resource]. 2016.
21. https://github.com/abisee/cnn-dailymail (accessed 07.04.2025).
22. See A., Liu P.J., Manning C.D. Get to the point: Summarization with pointer-generator networks // arXiv preprint arXiv:1704.04368. 2017.
23. Varab D., Schluter N. MassiveSumm: a very large-scale, very multilingual, news summarisation dataset // Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021. P. 10150–10161.
24. Vaswani A. et al. Attention is all you need // Advances in neural information processing systems. 2017. Vol. 30.
25. Xin L., Liutova D., Malykh V. Cross-Language Summarization in Russian and Chinese Using the Reinforcement Learning // International Conference on Analysis of Images, Social Networks and Texts. Cham: Springer Nature Switzerland, 2024. P. 179–192.
26. Yutkin M. Lenta.Ru News Dataset [Electronic resource]. 2018. Available at: https://github.com/yutkin/Lenta.Ru-News-Dataset (accessed 04.05.2025).
27. Zhang J. et al. Pegasus: Pre-training with extracted gap-sentences for abstractive summarization // International conference on machine learning. PMLR, 2020. P. 11328–11339.
28. Zhang T. et al. Bertscore: Evaluating text generation with bert // arXiv preprint arXiv:1904.09675. 2019.
Review
For citations:
Lyutova D.A., Malykh V.A. Abstractive Summarization for Trade News Analysis Based on a New Domain-Specific Dataset. Russian Digital Libraries Journal. 2025;28(5):1120-1137. (In Russ.) https://doi.org/10.26907/1562-5419-2025-28-5-1120-1137
JATS XML















