Preview

Russian Digital Libraries Journal

Advanced search

Development of a Visual Perception System for Game Agents in Video Games

https://doi.org/10.26907/1562-5419-2025-28-3-506-531

Abstract


The developed algorithm of the visual perception system for game agents, implemented in the Unity game engine, is presented. The proposed method is based on the comparison of images from two cameras, taking into account complex visual effects (lighting, shadows, camouflage), and supplemented with line-of-sight verification, taking into account the speed of the object, and the mechanics of gradual detection. Testing of the system has shown a significant increase in realistic detection compared to traditional methods, while maintaining performance within a small additional load on the processor. The algorithm was optimized using Unity Job System and dynamic camera activation. The scientific literature on similar solutions has also been analyzed and their strengths and weaknesses have been identified. The results can be applied in video game development to create realistic behavior of non-player characters, especially in games with stealth elements.

About the Authors

Artyom Mikhailovich Primachenko
Kazan (Volga region) Federal University
Russian Federation


Murad Rustemovich Khafizov
Kazan (Volga region) Federal University
Russian Federation


References

1. Миллингтон Я. Искусственный интеллект для игр / Я. Миллингтон, Дж. Фанж. СПб.: Питер, 2021. 816 с.

2. Рабинович З.Л. Методы и алгоритмы искусственного интеллекта в компьютерных играх: учеб. пособие. М.: Физматлит, 2018. 320 с.

3. Петров А.В. Искусственный интеллект в трехмерных играх. Программирование и моделирование поведения персонажей. М.: ДМК Пресс, 2019. 452 с.

4. Buckland M. Programming Game AI by Example. Sudbury: Jones & Bartlett Learning, 2022. 522 c.

5. Ostuni D., Galante E.T. Towards an AI playing Touhou from pixels: a dataset for real-time semantic segmentation // 2021 IEEE Conference on Games (CoG). 2021. P. 1–5. https://doi.org/10.1109/CoG52621.2021.9619112.

6. Tutum C., AbdulQuddos S., Miikkulainen R. Generalization of Agent Behavior through Explicit Representation of Context // 2021 IEEE Conference on Games (CoG). 2021. P. 1–7. https://doi.org/10.1109/CoG52621.2021.9619141.

7. Guerrero-Romero C., Perez-Liebana D. MAP-Elites to Generate a Team of Agents that Elicits Diverse Automated Gameplay // 2021 IEEE Conference on Games (CoG). 2021. P. 1–8. https://doi.org/10.1109/CoG52621.2021.9619142.

8. Glassner A.S. (Ed.). An introduction to ray tracing. Morgan Kaufmann, 1989.

9. Panwar H. The NPC AI of the last of us: a case study // arXiv preprint arXiv:2207.00682. 2022.

10. Mahmoud I., Jaffal Y., Wloka D. A Vision Simulation Algorithm for Non-Player Character in Static Scene // University of Kassel, Germany. 2014. P. 6.

11. Tremblay J., Torres P.A., Verbrugge C. Measuring Risk in Stealth Games // Foundations of Digital Games. Liberty of the Seas, 2014. P. 8.

12. NPC Eyes Sight System – PRO. URL: https://www.fab.com/listings/6b54716a-dd21-414d-b78f-384068de14b7

13. Erdelyi C. Using Computer Vision Techniques to Play an Existing Video Game // California State University San Marcos. 2019. P. 49.

14. Паренюк Л.Н., Кугуракова В.В. Разработка плагина поведения NPC для игрового движка Unity // Электронные библиотеки. 2020. T. 23(5). С. 1044–1057. http://doi.org/10.26907/1562-5419-2020-23-5-1044-1057.

15. Estgren M. Modelling NPC perception using supervised learning // Uppsala University, Sweden. 2021. 8 p. URL: https://sciion.se/assets/papers/npc-perception.pdf

16. Bourg D.M., Seemann G. AI for Game Developers. O’Reilly Media, Inc. 2004.

17. Jack M. Tactical Position Selection: An Architecture and Query Language. In Game AI Pro 360. CRC Press. 2019. P. 1–24.

18. McIntosh T. Human Enemy AI in The Last of Us. In Game AI Pro 360. CRC Press, 2019. P. 13–24.

19. Welsh R. Crytek’s Target Tracks Perception System. In Game AI Pro: Collected Wisdom of Game AI Professionals. 2013. Vol. 403. 411 p.

20. Walsh M. Modeling Perception and Awareness in Tom Clancy’s Splinter Cell Blacklist. In Game AI Pro 360. CRC Press. 2019. P. 73–86.

21. Ying Z., Edwards N., Kutuzov M. Efficient Visibility Approximation for Game AI using Neural Omnidirectional Distance Fields // Proceedings of the ACM on Computer Graphics and Interactive Techniques. 2024. Vol. 7, No. 1. P. 1–15.

22. Image Comparison Tuned to Human Perception // Computer Science Stack Exchange. 2015. URL: https://cs.stackexchange.com/questions/48862/image-comparison-tuned-to-human-perception

23. Pramod R.T., Katti H., Arun S.P. Human peripheral blur is optimal for object recognition // Vision Research. 2022. Vol. 200. P. 108083.

24. Fastest Gaussian Blur (in Linear Time) // Algorithms and Stuff. 2014. URL: https://blog.ivank.net/fastest-gaussian-blur.html

25. Кугуракова В.В., Бедрин О.А. Система автоматизации функционального тестирования для платформы Unity // Вестник компьютерных и информационных технологий. 2020. Т. 17, № 12. С. 47–52. https://doi.org/10.14489/vkit.2020.12.pp.047-052


Review

For citations:


Primachenko A.M., Khafizov M.R. Development of a Visual Perception System for Game Agents in Video Games. Russian Digital Libraries Journal. 2025;28(3):506-531. (In Russ.) https://doi.org/10.26907/1562-5419-2025-28-3-506-531

Views: 42


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-5419 (Online)