Preview

Russian Digital Libraries Journal

Advanced search

Combining SfM and ORB Algorithms in 3D Reconstruction

https://doi.org/10.26907/1562-5419-2023-26-4-456–465

Abstract


This article presents a new algorithm for 3D reconstruction using a combination of two existing methods – Structure from Motion (SfM) and Oriented FAST and Rotated BRIEF (ORB). The authors propose an approach that merges the advantages of both methods to enhance the accuracy and efficiency of reconstructing the 3D structure of scenes from images. To improve reconstruction quality, filtering and outlier removal are applied, along with other optimizations. Comparative results between the new algorithm and existing methods demonstrate its superiority in accuracy and noise robustness. The proposed approach is highly scalable and can be successfully applied in various fields that require precise 3D reconstruction of image scenes.

About the Authors

I. A. Daminov
Kazan (Volga region) Federal University
Russian Federation


A. Y. Arsenyuk
Kazan (Volga region) Federal University
Russian Federation


A. S. Toschev
Kazan (Volga region) Federal University
Russian Federation


References

1. Szeliski R. Computer Vision, Algorithms and Applications. Springer. 2011, 505 p.

2. Seitz S. M., Dyer C. R. Photorealistic Scene Reconstruction by Voxel Coloring, Proc. Computer Vision and Pattern Recognition Conf. 1997. P. 1067–1073.

3. Fraltsov D. Single image 3D scene reconstruction. toloka.ai [Электронный ресурс]. 2023. URL: https://toloka.ai/blog/3d-scenes-reconstruction

4. Hartley R., Zisserman A. Multiple view geometry in computer vision. Cambridge University press. 2004, 56 p.

5. X. Zhu, H. Hu, S. Lin, J. Dai. Deformable convnets v2: More deformable, better results. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019. P. 9308–9316.

6. Introduction to SURF (Speeded-Up Robust Features). OpenCV documentation [Электронный ресурс]. 2021. URL: https://docs.opencv.org/3.4/df/dd2/tutorial_py_surf_intro.html

7. Seitz S. M. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, in Proc. IEEE international Conference on Computer Vision and Pattern Recognition. New York, USA. 2006.

8. Итеративный алгоритм ближайших точек. Wikipedia [Электронный ресурс]. 2021 URL: https://en.wikipedia.org/wiki/Iterative_closest_point

9. Hengyu Y., Hongyang . Incremental SFM 3D reconstruction based on monocular. 13th International Symposium on Computational Intelligence and Design (ISCID). 2020. P. 523.


Review

For citations:


Daminov I.A., Arsenyuk A.Y., Toschev A.S. Combining SfM and ORB Algorithms in 3D Reconstruction. Russian Digital Libraries Journal. 2023;26(4):456–465. (In Russ.) https://doi.org/10.26907/1562-5419-2023-26-4-456–465

Views: 20


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-5419 (Online)