Распределенная тренировка ML-модели на мобильных устройствах
https://doi.org/10.26907/1562-5419-2020-23-5-1076-1092
Аннотация
Об авторах
Д. В. СимонРоссия
И. С. Шахова
Россия
Список литературы
1. Brendan McMahan and Daniel Ramage. Federated Learning: Collaborative Machine Learning without Centralized Training Data. 2017. URL: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (дата обращения: 03.03.2020)
2. Krishna Pillutla at all. Robust Aggregation for Federated Learning. 2019. arXiv:1912.13445 [stat.ML]
3. What’s New in the iOS SDK // Apple. 2019. URL: https://developer.apple.com/ios/whats-new/ (дата обращения: 03.03.2020)
4. Apple. What’s New in Core ML 3. 2019. URL: https://developer.apple.com/ machine-learning/core-ml/ (дата обращения: 03.03.2020)
5. MIT Technology Review. From cloud to the edge: On-device artificial intelligence boosts performance. 2019. URL: https://www.technologyreview.com/s/ 613527/from-cloud-to-the-edge-on-device-artificial-intelligence-boosts-performance/ (дата обращения: 03.03.2020)
6. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-Efficient Learning of Deep Networks from Decentralized Data. In Artificial Intelligence and Statistics, 2017. P. 1273–1282.
7. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal, and K. Seth. Practical Secure Aggregation for Privacy-Preserving Machine Learning. In ACM SIGSAC Conference on Computer and Communications Security, стр. 1175–1191, 2017.
8. Get Started with Federated Learning for Data privacy // Leapfrog. 2019. URL: https://www.lftechnology.com/blog/ai/federated-learning-data-privacy/ (дата обращения: 03.03.2020)
9. Theo Ryffel at all. A generic framework for privacy preserving deep learning. 2018. arXiv:1811.04017 [cs.LG]
10. Personalizing a Model with On-Device Updates // Apple. 2019. URL: https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates (дата обращения: 03.03.2020)
11. Matthijs Hollemans. On-device training with Core ML – part 1. 2019. URL: https://machinethink.net/blog/coreml-training-part1/ (дата обращения: 03.03.2020)
12. Jason Brownlee. A Gentle Introduction to Transfer Learning for Deep Learning. 2017. URL: https://machinelearningmastery.com/transfer-learning- for-deep-learning/ (дата обращения: 03.03.2020)
13. Alexander Rakhlin. Online Methods in Machine Learning. 2016. URL: http://www.mit.edu/~rakhlin/6.883/
14. Martijn Willemsen. Anonymizing Unstructured Data to Prevent Privacy Leaks during Data Mining. 2016. URL: https://www.semanticscholar.org/paper/ Anonymizing-Unstructured-Data-to-Prevent-Privacy-Willemsen/40781ab4856f3d50af8ecda8f9aa1851c2e027eb (дата обращения: 03.03.2020)
15. Adam Drake. Scalable Machine Learning with Fully Anonymized Data. 2018. URL: https://adamdrake.com/scalable-machine-learning-with-fully- anonymized-data.html (дата обращения: 03.03.2020)
16. Analytics Vidhya. Introduction to Apple’s Core ML 3 – Build Deep Learning Models for the iPhone. 2019. URL: https://www.analyticsvidhya.com/blog/2019/11/ introduction-apple-core-ml-3-deep-learning-models-iphone/ (дата обращения: 03.03.2020)
Рецензия
Для цитирования:
Симон Д.В., Шахова И.С. Распределенная тренировка ML-модели на мобильных устройствах. Электронные библиотеки. 2020;23(5):1076-1092. https://doi.org/10.26907/1562-5419-2020-23-5-1076-1092
For citation:
Simon D.V., Shakhova I.S. Distributed Training of ML Model on Mobile Devices. Russian Digital Libraries Journal. 2020;23(5):1076-1092. (In Russ.) https://doi.org/10.26907/1562-5419-2020-23-5-1076-1092