Preview

Russian Digital Libraries Journal

Advanced search

Npc Behavior Plugin Development for Game Engine Unity

https://doi.org/10.26907/1562-5419-2020-23-5-1044-1057

Abstract

There are various approaches for creating artificial intelligence in games, and each has both advantages and disadvantages. This study describes an authoring implementation of the NPC behavior task using machine learning algorithms that will be associated with the Unity environment in real time. This approach can be used in game development.

About the Authors

L. N. Parenyuk
Higher School ITIS. Kazan Federal University
Russian Federation


V. V. Kugurakova
Higher School ITIS. Kazan Federal University
Russian Federation


References

1. Бакиров А.Р., Костюк Д.И., Лазарев Е.Н., Хафизова А.Р. Опыт создания неигровых персонажей в виртуальных мирах // Электронные библиотеки. 2016. T. 19. № 6. C. 502–520.

2. Juliani A., Berges V., Vckay E., Gao Y., Henry H., Mattar M., Lange D. Unity: A General Platform for Intelligent Agents / Open-source library // 2018. URL: https://github.com/Unity-Technologies/ml-agents

3. Juliani A. Introducing: Unity Machine Learning Agents Toolkit // 2017. URL: https://blogs.unity3d.com/2017/09/19/introducing-unity-machine- learning-agents/

4. Tang W., Lai J. Enhancing Agent Intelligence with Behavior Duplication // Advanced Materials Research. 2012. Vols. 403–408. P. 1266–1269.

5. Hugunin J. IronPython / Open-source library // 1st ver. 2006: last ver. 2018. URL: https://ironpython.net

6. Scikit-learn / Open source library // 1st ver. 2007: last ver. 2020. URL: https://scikit-learn.org

7. Pedregosa F. et al. Scikit-learn: Machine Learning in Python // Journal of Machine Learning Research (JMLR 12). 2011. P. 2825–2830.

8. Li Y., Xu D.-W. A Game AI based on ID3 Algorithm // Conference: 2016 2nd International Conference on Contemporary Computing and Informatics. 2016. P. 681–687.

9. De Freitas J.M., De Souza F.R., Bernardino H.S. Evolving Controllers for Mario AI Using Grammar-based Genetic Programming // IEEE Congress on Evolutionary Computation (CEC). 2018. P. 1–8.

10. ITIS-DML-M2020-ParenyukLN. (2020) Python Unity Research [демонстрационная видеозапись] // YouTube. 9 марта 2020. – (https://www.youtube.com/watch?v=4AqrpTxCXYk).

11. Плагин поведения NPC для игрового движка UNITY / Project repository // 2020. – URL: https://github.com/parenyukln/pyton-unity-research

12. C.-U. Lim, R. Baumgarten, S. Colton, C. Di Chio, S. Cagnoni, C. Cotta, M. Ebner, A. Ekárt, A.I. Esparcia-Alcazar, C.-K. Goh, J.J. Merelo, F. Neri, M. Preuß, J. Togelius, G.N. Yannakakis. Evolving behaviour trees for the commercial game defcon // Applications of Evolutionary Computation, Berlin, Heidelberg: Springer Berlin Heidelberg. 2010. P. 100–110.

13. D Roguelike tutorial // Unity Technologies. 2015. URL: https://learn.unity.com/project/2d-roguelike-tutorial


Review

For citations:


Parenyuk L.N., Kugurakova V.V. Npc Behavior Plugin Development for Game Engine Unity. Russian Digital Libraries Journal. 2020;23(5):1044-1057. (In Russ.) https://doi.org/10.26907/1562-5419-2020-23-5-1044-1057

Views: 43


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-5419 (Online)