Stability Studies of a Coupled Model to Perturbation of Initial Data
https://doi.org/10.26907/1562-5419-2020-23-4-615-633
Abstract
About the Authors
K. P. BelyaevRussian Federation
G. M. Mikhaylov
Russian Federation
A. N. Salnikov
Russian Federation
N. P. Tuchkova
Russian Federation
References
1. Bronselaer B., Winton M., Griffies S.M., Stouffer R.J., Hurlin W.J., Rodgers K., Russell J.L. Change in future climate due to Antarctic meltwater // Nature. 2018. V. 564. Issue 7734. P. 53–58. https://www.nature.com/articles/s41586-018-0712-z (доступно 07.11.2019)
2. Holt J., Polton J., Huthnance J., Wakelin S., Enda O'Dea E., Harle J., Yool A., Artioli Y., Blackford Y., Siddorn J., Inall M. Climate-Driven Change in the North Atlantic and Arctic Oceans Can Greatly Reduce the Circulation of the North Sea // Geophysical Research Letters. 2018. https://doi.org/10.1029/2018GL078878 (доступно 07.11.2019)
3. Jungclaus J.H., Fischer N., Haak H., Lohmann K., Marotzke J., Matei D., Mikolajewicz U., Notz D., Storch J.S. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model // J. of Advances in Modeling Earth Systems. 2013. Issue 2. P. 422–446. https://doi.org/10.1002/jame.20023 (доступно 07.11.2019)
4. Taylor K.E., Stouffer R.J., Meehl G.A. An overview of CMIP5 and the experiment design // Bulletin American Meteorological Society. 2012. V. 93. No. 4. https://journals.ametsoc.org/doi/abs/10.1175/BAMS-D-11-00094.1 (доступно 07.11.2019)
5. Марчук Г.И., Дымников В.П., Залесный В.Б. Математические модели в геофизической гидродинамике и численные методы их реализации. Л.: Гидрометиздат, 1987. 296 с.
6. Наац В.И., Наац И.Э. Математические модели и численные методы в задачах экологического мониторинга атмосферы. М.: ФИЗМАТЛИТ, 2010. 328 с.
7. The Intergovernmental Panel on Climate Change. https://www.ipcc.ch/ (доступно 01.07.2019)
8. Breckling S.M., Pahlevani N.F. A sensitivity study of the Navier-Stokes-α model // Computers and Mathematics with Applications. 2018. V. 75. P. 666-689.
9. Belyaev K.P., Kirchner I., Kuleshov A.A., Tuchkova N.P. Numerical Realization of Hybrid Data Assimilation Algorithm in Ensemble Experiments with the MPIESM Coupled Model. In: Velarde M., Tarakanov R., Marchenko A. (eds). The Ocean in Motion. Springer Oceanography. 2018. P. 447–459. https://doi.org/ 10.1007/978-3-319-71934-4_27
10. Baehr J., Fröhlich K., Botzet M. et al. The prediction of surface temperature in the new seasonal prediction system based on the MPI-ESM coupled climate model // Climate Dynamic. 2015. V. 44. Issue 9-10. P. 2723–2735. https://doi.org/ 10.1007/s00382-014-2399-7
11. Notz D., Haumann F.A., Haak H., Jungclaus J.H., Marotzke J. Arctic sea-ice evolution as modeled by Max Planck Institute for meteorology’s Earth system model // J. of Advances in Modeling Earth Systems. 2013. V. 5. P. 173–194. https://doi.org/ 10.1002/jame.20016 (доступно 07.11.2019)
12. Global warming of 1.5 °C https://www.ipcc.ch/sr15/ (access 01.07.2019)
13. WMO Statement on the State of the Global Climate in 2019. https://library.wmo.int/doc_num.php?explnum_id=5789 (доступно 07.11.2019)
14. Koul V., Schrum C., Düsterhus A., Baehr J. Atlantic Inflow to the North Sea Modulated by the Subpolar Gyre in a Historical Simulation with MPI‐ESM // J. of Geophysical Research: Oceans, 2019. V. 124. Issue 3. P. 1807–1826. https://doi.org/ 10.1029/2018JC014738 (доступно 07.11.2019)
Review
For citations:
Belyaev K.P., Mikhaylov G.M., Salnikov A.N., Tuchkova N.P. Stability Studies of a Coupled Model to Perturbation of Initial Data. Russian Digital Libraries Journal. 2020;23(4):615-633. (In Russ.) https://doi.org/10.26907/1562-5419-2020-23-4-615-633