Preview

Russian Digital Libraries Journal

Advanced search

Determining the Thematic Proximity of Scientific Journals and Conferences Using Big Data Technologies

https://doi.org/10.26907/1562-5419-2020-23-3-514-525

Abstract

The number of scientific journals published in the world is very large. In this regard, it is necessary to create software tools that will allow analyzing thematic links of journals. The algorithm presented in this paper uses graphs of co-authorship for analyzing the thematic proximity of journals. It is insensitive to the language of the journal and can find similar journals in different languages. This task is difficult for algorithms based on the analysis of full-text information. Approbation of the algorithm was carried out in the scientometric system IAS ISTINA. Using a special interface, a user can select one interesting journal. Then the system will automatically generate a selection of journals that may be of interest to the user. In the future, the developed algorithm can be adapted to search for similar conferences, collections of publications and research projects. The use of such tools will increase the publication activity of young employees, increase the citation of articles and quoting between journals. In addition, the results of the algorithm for determining thematic proximity between journals, collections, conferences and research projects can be used to build rules in the ontology models for access control systems.

About the Authors

A. S. Kozitsin
Institute of Mechcanics Lomonosov Moscow State University
Russian Federation


S. A. Afonin
Institute of Mechcanics Lomonosov Moscow State University
Russian Federation


D. A. Shachnev
Institute of Mechcanics Lomonosov Moscow State University
Russian Federation


References

1. Садовничий В.А., Васенин В.А. Интеллектуальная система тематического исследования наукометрических данных: предпосылки создания и методология разработки. Часть 1 // Программная инженерия. 2018. Т. 9. № 2. С. 51–58.

2. Воронцов К.В. Лекции по логическим алгоритмам классификации URL:http://www.ccas.ru/voron/download/LogicAlgs.pdf

3. Шундеев А. С. Об изменении размерности векторного представления текстовых данных. Программная инженерия, , 2019 Т. 10. № 6. С. 265-273.

4. Бурлаева Е.И. Павлыш В.Н. Анализ методов преобразования текстов в форму объектов векторного пространства//Программная инженерия. 2019, Т. 10. № 1. с.30-37.

5. Трофимов И.В. Морфологический анализ русского языка: обзор прикладного характера//Программная инженерия. 2019, Т. 10. № 9. с. 391–399

6. Vasenin V., Lunev K., Afonin S., Shachnev D. Methods for intelligent data analysis based on keywords and implicit relations: The case of "istina" data analysis system//In Actual Problems of Systems and Software Engineering – APSSE 2019, IEEE Conference Proceedings, pages 151-155, United States, 2019

7. ИАС ИСТИНА. URL: https://istina.msu.ru.

8. Библиотека datatables. URL: https://datatables.net/

9. Afonin S. Ontology models for access control systems. In 2018 3rd Russian-Pacific Conference on Computer Technology and Applications (RPC). 2018. P. 1–6. doi: 10.1109/RPC.2018.8482178.


Review

For citations:


Kozitsin A.S., Afonin S.A., Shachnev D.A. Determining the Thematic Proximity of Scientific Journals and Conferences Using Big Data Technologies. Russian Digital Libraries Journal. 2020;23(3):514-525. (In Russ.) https://doi.org/10.26907/1562-5419-2020-23-3-514-525

Views: 23


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1562-5419 (Online)