Graph Self-Transformation Model Based on the Operation of Change the End of the Edge
https://doi.org/10.26907/1562-5419-2020-23-3-315-335
Abstract
About the Author
I. B. BurdonovRussian Federation
References
1. Wiener H. Structural determination of paraffin boiling points // J. Am. Chem. Soc. 1947. No 69 (1). P. 17–20.
2. Кочкаров A.A., Сенникова Л.И., Кочкаров Р.А. Некоторые особенности применения динамических графов для конструирования алгоритмов взаимо-действия подвижных абонентов // Известия ЮФУ. Технические науки, раздел V, cистемы и пункты управления. 2015. №1. С. 207–214.
3. А.В. Проскочило, А.В. Воробьев, М.С. Зряхов, А.С. Кравчук. Анализ состояния и перспективы развития самоорганизующихся сетей // Научные ведомости, серия экономика, информатика, выпуск 36/1. 2015. № 19 (216). С. 177–186.
4. Pathan A.S.K. (ed.). Security of self-organizing networks: MANET, WSN, WMN, VANET. CRC press, 2010. 638 p.
5. Boukerche A. (ed.). Algorithms and protocols for wireless, mobile Ad Hoc networks // John Wiley & Sons, 2008. 496 p.
6. Chen Z., Li S., Yue W. SOFM Neural Network Based Hierarchical Topology Control for Wireless Sensor Networks // Hindawi Publishing Corporation. J. of Sensors. 2014. article ID 121278. 6 p. http://dx.doi.org/10.1155/2014/121278
7. Mo S., Zeng J.-C., Tan Y. Particle Swarm Optimization Based on Self-organizing Topology Driven by Fitness // International Conference on Computational Aspects of Social Networks, CASoN 2010, Taiyuan, China, 10.1109/CASoN. 2010. No 13. P. 23–26.
8. Wen C.-Y., Tang H.-K. Autonomous distributed self-organization for mobile wireless sensor networks // Sensors (Basel, Switzerland). 2009. V. 9, 11. P. 8961–8995.
9. Llorca J., Milner S.D., Davis C. Molecular System Dynamics for Self-Organization in Heterogeneous Wireless Networks // EURASIP J. on Wireless Communications and Networking. 2010. 10.1155/2010/548016. 13 p.
10. Wai-kai C. Net Theory And Its Applications: Flows In Networks. Imperial College Press (26 May 2003). 672 p.
11. Wang H. On the Extremal Wiener Polarity Index of Hückel Graphs // Computational and Mathematical Methods in Medicine. 2016. article ID 3873597. 6 p. http://dx.doi.org/10.1155/2016/3873597
12. Xu X., Gao Y., Sang Y., Liang Y. On the Wiener Indices of Trees Ordering by Diameter-Growing Transformation Relative to the Pendent Edges // Mathematical Problems in Engineering. 2019. article ID 8769428. 11 p. https://doi.org/ 10.1155/2019/8769428
13. The On-Line Encyclopedia of Integer Sequences (OEIS). http://oeis.org/
14. Fischerman M., Hoffmann A., Rautenbach D., Székely L., Volkmann L. Wiener index versus maximum degree in trees // Discrete Applied Mathematics. 2002. V. 122. Is. 1–3. P. 127–137.
15. Бурдонов И. Самотрансформация деревьев с ограниченной степенью вершин с целью минимизации или максимизации индекса Винера// Труды ИСП РАН. 2019. Т. 31. Вып. 4. С. 189–210.
Review
For citations:
Burdonov I.B. Graph Self-Transformation Model Based on the Operation of Change the End of the Edge. Russian Digital Libraries Journal. 2020;23(3):315-335. (In Russ.) https://doi.org/10.26907/1562-5419-2020-23-3-315-335